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Abstract

Background: Histopathologic evaluation of surgical specimens is a well established technique for disease
identification, and has remained relatively unchanged since its clinical introduction. Although it is essential for
clinical investigation, histopathologic identification of tissues remains a time consuming and subjective technique,
with unsatisfactory levels of inter- and intra-observer discrepancy. A novel approach for histological recognition
is to use Fourier Transform Infrared (FT-IR) micro-spectroscopy. This non-destructive optical technique can
provide a rapid measurement of sample biochemistry and identify variations that occur between healthy and
diseased tissues. The advantage of this method is that it is objective and provides reproducible diagnosis,
independent of fatigue, experience and inter-observer variability.

Methods: We report a method for analysing excised lymph nodes that is based on spectral pathology. In spectral
pathology, an unstained (fixed or snap frozen) tissue section is interrogated by a beam of infrared light that
samples pixels of 25 pm X 25 um in size. This beam is rastered over the sample, and up to 100,000 complete
infrared spectra are acquired for a given tissue sample. These spectra are subsequently analysed by a diagnostic
computer algorithm that is trained by correlating spectral and histopathological features.

Results: We illustrate the ability of infrared micro-spectral imaging, coupled with completely unsupervised
methods of multivariate statistical analysis, to accurately reproduce the histological architecture of axillary lymph
nodes. By correlating spectral and histopathological features, a diagnostic algorithm was trained that allowed both
accurate and rapid classification of benign and malignant tissues composed within different lymph nodes. This
approach was successfully applied to both deparaffinised and frozen tissues and indicates that both intra-operative
and more conventional surgical specimens can be diagnosed by this technique.

Conclusion: This paper provides strong evidence that automated diagnosis by means of infrared micro-spectral
imaging is possible. Recent investigations within the author's laboratory upon lymph nodes have also revealed that
cancers from different primary tumours provide distinctly different spectral signatures. Thus poorly differentiated
and hard-to-determine cases of metastatic invasion, such as micrometastases, may additionally be identified by
this technique. Finally, we differentiate benign and malignant tissues composed within axillary lymph nodes by
completely automated methods of spectral analysis.
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Background

At present, breast cancer is the most common malignancy
found among women, with high death rates recorded in
the United Kingdom (13,000 p.a.) and the United States
of America (40,000 p.a.) [1]. The introduction of mam-
mography programs, together with greater public aware-
ness of breast cancer, has significantly improved the early
detection of breast cancers and thus their effective treat-
ment. Although x-ray mammography can readily identify
areas of tumour growth within the breast, it cannot be reli-
ably used to diagnose whether a tumour is benign or
malignant in nature. The accurate diagnosis of a suspi-
cious lesion therefore necessitates an invasive procedure
to obtain a tissue biopsy. An additional tool for diagnosis
or staging of disease is the assessment of lymph nodes in
the ipsilateral axilla. The presence of metastasis is an indi-
cator for local disease recurrence and thus a method for
identifying patients that are at high risk of developing dis-
ease that could spread throughout the body. The well
established procedure to assess lymph node metastasis is
axillary lymph node dissection (ALND). This involves the
surgical removal of all or most lymph nodes that exist
under the arm. However, this is a rather substantial surgi-
cal procedure and can lead to several serious side effects,
including shoulder dysfunction and lymphodema [2].
More recently, intra-operative diagnosis of excised lymph
nodes has been used within a small number of hospitals.
Such rapid diagnoses are made upon the sentinel lymph
node that has direct lymphatic connection to the breast
tumour [3]. Surgical studies have clearly shown that if
metastasis cannot be found in the sentinel lymph node,
the chance of disease being found further down the chain
of nodes is negligible, thus alleviating the necessity to
remove all nodes present [3].

Biopsy material collected during these surgical procedures
are subsequently scrutinised using traditional histological
techniques [4], whereby dyes are introduced that stain dif-
ferent cellular components different colours. These stain-
ing patterns provide the basis for morphological pattern
recognition, allowing a trained observer to distinguish
between healthy and diseased tissue. However, traditional
histology remains a subjective technique, with significant
problems often encountered. These include missed
lesions and unsatisfactory levels of inter- and intra-
observer agreement [5-10]. Alternative techniques have
been employed to facilitate faster intra-operative diagno-
sis of sentinel nodes, including imprint cytology [11,12],
and frozen section analysis [13,14]. The processing of
samples is accelerated for these techniques, involving an
analysis time of approximately 30-60 minutes. Yet, both
approaches report wide variation in their sensitivity to
detect cancerous lesions, detection levels as low as 44%
and as high as 93% when compared with conventional
histology [11-17]. These variations indicate that such
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methodologies do not solve the problems associated with
screening lymph nodes.

The lack of a reliable tool to swiftly diagnose both conven-
tional and intra-operative surgical specimens has led to a
considerable amount of interest in the application of a
spectroscopic approach. Fourier Transform infrared (FT-
IR) spectroscopic imaging is rapidly becoming a key tech-
nique for biomedical spectroscopy since it provides spa-
tially resolved chemical characterisation of microscopic
areas. Using this technique, contrast between different
spatial areas occurs due to inherent chemical differences
found within cells of the tissue, producing molecule-spe-
cific vibrational signatures. A chemical image of the tissue
section can then be constructed that is similar to the mor-
phological interpretation of a stained image, thus ena-
bling the identification of tissue classes and providing an
insight into their molecular composition. An FT-IR spec-
troscopic approach, therefore, has several advantages over
conventional histology. For example, an infrared micro-
spectral image collected from a tissue section measuring 5
mm x 5 mm, using a spatial resolution of 25 pm x 25 pm
per spectral measurement, consists of 40,000 individual
objective measurements that describe the biochemistry of
the tissue regions. Recent advances in instrumentation,
that employ multi-channel detector systems and fast inter-
ferometry, allow the collection of such spectral datasets
within a matter of minutes, and the continuing improve-
ments in technology are expected to reduce data collec-
tion times dramatically. Paraffin embedded specimens
that have been deparaffinised, or snap frozen sections
may be examined using this non-destructive technique.
The most important aspect of the proposed FI-IR
approach is that it provides an unbiased computer based
technique that can ultimately be automated. This paper
reports progress made within our laboratories to automat-
ically diagnose spectral data collected from both frozen
and deparaffinised axillary lymph node tissues.

Methods

Figure 1 shows a schematic diagram of the work flow for
training/validation and test phases of the work reported
here. It should be noted that the time-consuming cluster
analysis is required only in the training phase of the diag-
nostic algorithm, and that the final analysis of unknown
lymph node data sets can be performed within a minute
of data collection.

Specimen collection and sample preparation

This manuscript presents collaborative research under-
taken at three different spectroscopic laboratories. As a
consequence, adjustments to the type of sample prepara-
tion and mode of data acquisition were made to allow
additional spectroscopic measurements via Raman micro-
scopy [18], and the analysis of archival tissue blocks. Tis-
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Figure |

Work flow diagram for training and test phases of diagnostic algorithm. The current protocol for cancer diagnosis
and grading of biopsy material involves the sectioning of samples, H&E staining, and an assessment of tissue and cellular mor-
phology by a pathologist (left, blue shaded boxes). To implement an automated protocol of analysis using infrared micro-spec-
tral imaging, a training phase is required to develop a robust diagnostic algorithm (right, red shaded boxes). The final paradigm
for automated analysis involves infrared micro-spectral imaging of unstained tissue, followed by computer analysis using the
diagnostic algorithm (right, green arrow). A two step approach for training a neural net was employed in this investigation.
Spectral data sets recorded from tissues are initially scrutinised via hierarchical cluster analysis (HCA), a completely unsuper-
vised method of analysis, to produce groups of infrared spectra that are specific to tissue type or class. This is achieved by
directly correlating spectral images constructed from HCA analysis, to morphological interpretations that were made by a
pathologist using the stained tissue. These tissue specific groups of spectra were then pooled into two separate data blocks,
classed as being either healthy or malignant in nature. These newly compiled data blocks were then used to train a diagnostic

ANN.

sue specimens investigated in the UK involved the
collection of additional biopsy samples, during routine
surgical investigations, with full written consent of the
patient. Ethical approval for these studies was provided by
the Gloucestershire Local Research Ethics Committee and
Gloucestershire Royal Hospital. These samples were
immediately mounted on acetate paper, placed in a 2 mL
cryovial, and snap frozen in liquid nitrogen. Samples were
then cut with a freezing microtome to provide tissue sec-
tions of 6 pm thickness, which were mounted on barium
fluoride substrates to enable acquisition of spectra in
transmission mode. This methodology was adopted since
it minimised the contamination of the sample from fixing
and mounting agents, negated possible changes to sample
biochemistry via conventional paraffinisation and depar-
affinisation procedures, and allowed additional Raman
spectral data to be collected without the background
affects associated with glass substrates. This manuscript
shall not detail the results from the Raman investigations
since these are already partially documented in a previous
work and were undertaken with the goal of collecting a
library of data for the development of an in vivo optical
tool [18].

Tissue specimens investigated in the USA were cut from
the archival tissue banks held at Cook County Hospital,
Chicago, IL. The use of such a bank allowed the acquisi-
tion of a greater number of tissues with a firm histological
diagnosis. These specimens were stored as paraffin-
embedded tissue blocks and were cut, using a microtome,
to provide tissue sections of 6 um thickness and subse-
quently deparaffinised. These sections were mounted on
reflective substrates that allow spectra to be recorded in
transflection mode [19]. In this measurement mode, the
probing IR beam passes the sample, is reflected by the
substrate, and passes the sample again.

The investigation of tissue that has been chemically
treated is unavoidable in this scenario, and is likely to
have small affects upon the biochemistry of the tissue. For

example, during the wax embedding procedure, tissue sec-
tions are subject to a series of solvents with decreasing
polarity (water, ethanol/water, xylene, paraftin). This can
dissolve lipids and consequently remove them from the
tissue sections. Therefore the application of this sample
preparation would not be recommended for the investiga-
tion of tissue morphology inside adipose rich tissues. In
addition, the complete deparaffinisation of tissue is rec-
ommended for spectroscopic analyses since paraffin
exhibits strong bands in the methyl and methylene
stretching (3000 - 2800 cm') and deformation (~1450
cm!) regions of the infrared spectrum, which may con-
found subsequent multivariate analyses. Despite these
chemical treatments, potent biochemical information is
retained as highlighted by conventional immunohisto-
chemical studies. For example, IR spectroscopic investiga-
tions on frozen [20] and de-paraffinised [21] brain tissues
excised from rats, displayed similar sensitivities in their
ability to identify anatomical features of both healthy and
diseased tissues.

The use of reflective substrates (Kevley Technologies,
Chesterland, Ohio, USA) for the investigation of these tis-
sues was a decision based upon cost, and reflected the
need for cheap consumable IR substrates that could be
used in a clinical environment (~US$ 1 per slide com-
pared with > US$200 for BaF, or CaF,). These slides are
made of glass coated with a thin Ag/SnO, layer. They are
chemically inert and nearly transparent to visible light.
However, they reflect mid-infrared radiation almost com-
pletely and are therefore ideal and inexpensive substrates
for infrared micro-spectroscopy in reflection mode, as
they allow both visual and infrared images to be collected
from the same sample.

As part of this study we have examined more than 1.4 mil-
lion infrared spectra recorded from 30 whole excised
lymph nodes (10 by frozen sectioning and 20 by depar-
affinisation of wax-embedded tissues). We report here a
subset of this spectral library, containing c.a. 240,000
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infrared spectra recorded from 6 excised lymph nodes (3
by frozen sectioning and 3 by deparaffinisation of wax
embedded tissues).

Spectroscopic data acquisition and processing

Spectroscopic imaging data were acquired using a com-
mercially available infrared spectrometer (Perkin-Elmer,
Spectrum One) coupled to an infrared microscope (Per-
kin-Elmer, Spectrum Spotlight 300). This instrument
employs a sensitive mercury-cadmium-telluride (MCT)
linear array detector system (16 elements), coupled with a
computerised stage, to collect large spectroscopic images
from a sample. In this study, spectroscopic images were
recorded from entire lymph nodes and could vary in size
from c.a. 5 mm2to 10 mm?2. Each pixel sampled a 25 pm
x 25 um area at the sample plane, providing images that
contained between 40,000 and 160,000 individual infra-
red spectra. Spectral data were acquired either in transmis-
sion mode for frozen tissues or transflection mode for
deparaffinised tissues. All spectral measurements were
recorded using a mirror speed of 1 cm s, a spectral reso-
lution of 8 cm-!, and a minimum signal-to-noise ratio of
200 (signal: maximum of the amide I band; noise: the
standard deviation in the spectral range 1800 - 1900 cm-
1). Each spectrum was fast Fourier transformed using Nor-
ton-Beer apodisation to yield single beam spectra. An
appropriate background spectrum was collected outside
the sample area to ratio against the single beam spectra.
The resulting ratioed spectra were then converted to
absorbance. The acquisition of spectroscopic images of
this magnitude was quite time-consuming, and could
require several hours for very large tissue sections. How-
ever, more recent instrumentation that utilise Focal Plane
Array (FPA) detector technology provide far superior rates
of data acquisition at higher spatial resolution. Thus
images of similar magnitude can be collected in ca. 10
minutes. A more detailed account of these instruments
shall be included later in this manuscript. Following spec-
tral data acquisition, samples were either directly stained
(deparaffinised tissue), or adjacent sections cut and
stained (frozen tissue) using standard H&E protocols.
This allowed direct comparisons to be made between
pseudo colour maps constructed from unsupervised
methods of spectral analysis and traditional histopathol-

ogy.

As reported in previous contributions [22,23], infrared
spectra that display very small absorbance values and are
collected from the edges of a sample, where the tissue is
thin or does not adhere well to the substrate, can in a
some cases be contaminated with artefacts associated with
dispersion. This is an optical effect where spectra can
become distorted by the superposition of a dispersive line
shape during Fourier transformation, and is mostly prev-
alent in measurements that are acquired in transflection
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mode. A few techniques have been suggested to process
and correct the contaminated spectral data. These include
methods of spectral un-mixing [24], or performing a sec-
ondary phase correction on the spectra [22]. Since these
data processing techniques are computationally intensive,
we have adopted a method that removes all data with
such artefacts since the number of bad pixels in an image
is still very small (< 1%). By application of a stringent sig-
nal to noise test (as detailed below), the overwhelming
majority of spurious data is removed since they com-
monly display features of poor signal intensity. The
remaining bad pixels are identified during unsupervised
multivariate analysis by means of Hierarchical Cluster
Analysis (HCA). During this type of analysis, which is
described below, spectra with dispersive line shapes are
commonly grouped together into single clusters. There-
fore, any remaining spectra with unwanted artefacts can
be quickly identified and subsequently removed from any
data sets that would be used to train supervised algo-
rithms to classify spectral data.

All spectral data processing and image assembly was per-
formed using the CytoSpec software package http://
www.cytospec.com, which enables spectral processing
and multivariate analysis to be carried out on an entire
spectral imaging data set, or "spectral hypercube". Ini-
tially, a spectral quality test was performed to remove all
spectra recorded from areas where no tissue existed, or dis-
played poor signal to noise. This was accomplished by
subjecting all spectra to a "thickness" test, using settings of
20 and 500 for the minimal and maximal integrated
intensity criterion in the wavenumber range of 1600 -
1700 cm . All spectra that pass the test were then con-
verted to second derivative spectra (Savitzy-Golay algo-
rithm, 9 smoothing points) and vector normalised across
the full wavenumber region recorded (4000 - 750 cm1).
The former of these procedures produces better resolved
peaks and eliminates background slopes, whereas the lat-
ter reduces the influence of intensity changes caused by
differences in cellular density and thickness of the tissue.
Finally, the dimensionality of the spectral hypercube was
reduced to only include intensity values recorded in the
spectral ranges 3100 - 2800 cm! and 1800 - 900 cm!.
The C-H stretching region (3100 - 2800 cm') was
included in the analysis because it produced superior clas-
sification of tissue types and disease than the biological
fingerprint region (1800 - 900 cm-!) alone. These fully
processed spectral hypercubes were then used for subse-
quent Hierarchical Cluster Analysis (HCA) and Artificial
Neural Network (ANN) analysis.

Unsupervised methods of tissue classification via HCA
spectroscopic imaging

Data within a spectral hypercube are partitioned into
classes that reproduce tissue histology by use of Hierarchi-
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cal Cluster Analysis (HCA). This is a common technique
employed for pattern recognition and is completely unsu-
pervised [25]. The aim of the clustering process is to group
a given set of unlabelled data into a number of clusters, so
that data held within the same group are as similar as pos-
sible, and data held within different groups are as dissim-
ilar as possible. The algorithm of this technique can be
described in the following manner: First, a distance matrix
between all spectra contained within the hypercube is cal-
culated. This matrix contains the complete set of inter-
spectral distances (measures of similarity), is symmetric
along its diagonal, and has the dimensions n x n, where n
is the number of spectra. The two objects (spectra) that are
closest to one another (most similar) are merged into a
new object (cluster). Thus, the dimension of the distance
matrix is reduced to (n- 1) x (n - 1). Subsequently, the dis-
tances of the new formed object to all remaining objects is
recalculated, and again the two most similar objects are
merged. This clustering process is iterated until all objects
have been merged into a few clusters. This merging proc-
ess can be visualised in a tree-like "dendrogram" that can
be truncated at different points to reveal different cluster-
ing structures. The clusters created during the analysis
should contain spectra from histological regions that dis-
play comparable spectral characteristics. In contrast, spec-
tra contained in different clusters should exhibit spectral
features characteristic of different tissue types. Pseudo-col-
our "cluster images" can thus be assembled and compared
directly with H&E images captured from the same sample.
By assigning each cluster a colour, these colours can then
be plotted as pixels at the x, y coordinates from which the
spectrum was collected. Therefore, pixels with the same
colour in the image are spectra that were grouped together
into the same cluster. Subsequent to HCA analysis of a
spectral hypercube, pseudo-colour images of between 2
and 15 clusters, which describe different clustering struc-
tures, were assembled by cutting the calculated dendro-
gram at different levels. These cluster images were then
provided to the collaborating pathologists, who con-
firmed the clustering structure that best replicated the
morphological interpretations they made using the H&E
stained tissue section. After these correlations were made,
mean average spectra were calculated for each cluster, and
those that described artefacts from dispersion were subse-
quently removed from any further supervised analysis.
The spectral hypercubes reported in this manuscript were
devoid of clusters that contained such artefacts.

Pattern recognition by use of artificial neural networks
(ANN)

As shall be reported later in this paper, HCA spectroscopic
imaging can provide pseudo colour cluster images that are
directly comparable to conventional histology. However,
the application of this unsupervised technique to classify
data sets from multiple lymph nodes is complex and dis-
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tinctly time prohibitive. For example, a spectral data set
collected from a 5 mm x 5 mm section of tissue, with 25
um x 25 pm pixels, contains 40,000 individual infrared
spectra, which may exceed 300 MB of memory. The corre-
lation matrix calculated for this data set, which is used for
subsequent clustering, would exceed 4 GB of RAM and
requires a 64 bit processor with large memory access. Such
an analysis would take several hours, a timescale insuffi-
cient for rapid diagnosis. A more practical method to rap-
idly classify or diagnose recorded spectral data sets would
be to use a supervised method of analysis. Several differ-
ent types of supervised analysis have been employed to
classify spectral data from cells or tissues, including linear
discriminant analysis (LDA) [26-28], metric bayesian clas-
sification [29-31], support vector machines (SVM) [32,33]
and artificial neural networks (ANN) [34-37]. In this
investigation, neural networks were employed to classify
recorded spectral data, since data sets were easily transfer-
able between data acquisition, multivariate analysis, and
classification software. ANNs are modelled upon biologi-
cal nervous systems, such as the brain, to process informa-
tion and extrapolate common patterns that can be used
for classification. The internal mechanics of a neural net
and its possible applications are well documented and
discussed in detail elsewhere [38]. Within our laboratory
we have adopted a two step approach for training a diag-
nostic neural net. Spectral data sets recorded from tissues
are initially scrutinised by HCA to produce clusters that
are specific to tissue type or class. These tissue specific
clusters of spectra, along with their histopathological
diagnosis, are then used to train an artificial neural net-
work that may subsequently serve as a supervised method
of analysis. Such a neural net can allow the classification
of a large spectral data set, as described above, within one
minute. A schematic describing the methodology
employed is displayed in Figure 1.

In this study, artificial neural network classification and
feature selection was performed using NeuroDeveloper
2.5 (Synthon GmbH, Heidelberg, Germany). For each tis-
sue preparation method (frozen or de-paraffinised), a sep-
arate neural net was developed. A single tissue section in
each case was utilised for neural net training, and the clas-
sifier developed blind tested upon supplementary lymph
nodes. We additionally adopted a simple classification
scheme, where tissue spectra were classed as being either
healthy or malignant in nature. Therefore a lymph node
that displayed both histological features was used for
training. After HCA spectroscopic imaging was performed
on the training lymph node, a fixed number of 150 spec-
tra were randomly extracted from each tissue type cluster.
This fixed input number of spectra equated to one tenth
of the total spectra contained within the smallest tissue
type cluster (capsule tissue of lymph nodes) and helped to
avoid overrepresentation of a single tissue type. Spectral
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data was then pooled into two separate libraries of
healthy or malignant tissue. Using these newly assembled,
un-biased data sets, two data blocks were constructed for
subsequent training and validation of the neural net (split
in an 80% to 20% ratio, respectively). The training data
block was used to help establish the network parameters
that would provide the best possible classification. The
validation data block was alternatively used to optimise
the generalisation performance of a network that was in
training. A final data block, constructed from the tissue
spectra that remained in the original tissue type clusters,
was used as a final testing set to confirm that a given net-
work had sufficiently broad generalisation power to serve
reliably as a diagnostic algorithm.

Before a neural net was actively trained for classification
purposes, we applied a spectral feature selection algo-
rithm to the training block of data. This algorithm calcu-
lated the covariance of all spectral data points within the
training data block for each class type, whether healthy or
malignant. A ranking list of covariance values was then
assembled for each class type. From this list, the top 120
data points in each class, which displayed a minimum
covariance of 95%, were made available for neural net
training. This procedure reduced the complexity and
dimensionality of the input data and substantially
improved the quality and robustness of the classification
model. Three-layer, feed-forward networks with 5-120
input neurons, 4-20 hidden units, and 2 output nodes
were tested. Resilient back-propagation (Rprop) [39,40]
was used as the learning algorithm. Tested Rprop param-
eters were in the following range: A, = 0.075-0.1, A .« =
30-50 and a = 4-5 where A, is the initial network update
value, A, is the maximum update value and a is the
weight decay term. The training process was stopped
when errors of training and validation data sets con-
verged.

Results and discussion

The results presented in Figure 2 clearly illustrate the capa-
bility of spectroscopic imaging to accurately reproduce tis-
sue pathology. The H&E stained image displayed in Figure
2a was collected from a tissue section cut from a frozen
axillary lymph node (labelled as PN1). This tissue section
was cut adjacent to the section used for spectroscopic data
acquisition, and provides a means to directly compare
images constructed from HCA analysis with conventional
histology. After routine analysis by a histopathologist, this
lymph node was diagnosed as being positive for cancer,
since it displayed large regions of cancerous breast tissue
invasion and only a small pocket of remnant healthy cor-
tex tissue. The lymph node also displayed typical anatom-
ical structures that contain fibrocollagenous tissues, such
as the capsule, medullary cords and medullary sinuses.
Since this tissue section displayed all types of tissue com-
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monly found within an excised axillary lymph node, it
was chosen to provide a database of reference spectra from
which a diagnostic neural net could be trained. Figure 2b
displays a typical pseudo colour image that can be con-
structed using HCA spectroscopic imaging. By subjecting
the recorded spectral data set to HCA analysis, a clustering
dendrogram that describes the merging process of similar
spectra was produced. This was subsequently used for
cluster related imaging, whereby multiple images were
constructed that reflected different clustering structures.
The image displayed in Figure 2b represents the cutting of
the dendrogram to reveal a 5-cluster structure. It is clear
from Figure 2b that this clustering structure accurately
reproduces the histological features of the excised lymph
node. Cancerous breast tissue is represented by the red
cluster of spectra within the image, whereas the remnant
healthy cortex tissue is characterised by the dark blue clus-
ter of spectra. Fibrocollagenous tissues such as the cap-
sule, medullary cords, and medullary sinuses, are
represented by the dark green, cyan and grey colours
within the image respectively. The colour scheme utilised
by this image is entirely arbitrary and does not permit the
direct comparison of morphological features with the
same colour in different spectroscopic maps. Spectral dif-
ferences between clusters, which reflect variations in the
biochemical composition of different tissue types, can be
assessed by calculating and comparing mean cluster spec-
tra. It is far beyond the scope of this paper to provide a
detailed account of the spectral differences that were iden-
tified among these often diverse tissue types. However, as
reported in earlier contributions that examined and diag-
nosed cancers composed within cervical [41], colon [42],
prostate [43], lymph node [23,44] and thyroid tissues
[44], spectra collected from diseased or abnormal cells
appear to exhibit subtle but distinct changes to the shape,
intensity, and ratio, of protein and nucleic acid specific
molecular vibrations. This would prove to highlight a sig-
nificant change in both the protein and nucleic acid com-
position within these regions.

After verifying the clustering structure that most directly
reproduced tissue histopathology, spectra from each clus-
ter were extracted into a reference library, as described pre-
viously, and used to train a diagnostic neural net for the
classification of frozen axillary lymph node tissues. The
trained neural net was then directly applied to the original
spectral data set to confirm its sensitivity. Figure 2c dis-
plays the classification or ANN image that was con-
structed after supervised spectral analysis. By analysing the
spectral data set using the ANN, each spectrum was classi-
fied as being cancerous, healthy or un-identifiable. These
three class types were then assigned an individual colour,
so that cancerous spectra were coloured red, non-cancer-
ous spectra were coloured blue, and spectra that could not
be identified or were rejected were coloured black. These
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Figure 2
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ANN Image

Frozen tissue analysis using HCA spectroscopic imaging & supervised pattern recognition. (a) H&E stained image
of a positive lymph node PN 1. The positive node comprises large regions of cancerous breast tissue (4), remnants of healthy
cortex tissue (2), and collagenous tissues such as the capsule (1) and medullary sinuses (3), respectively. (b) HCA spectroscopic
image of positive lymph node PN . The IR imaged area (2.8 mm X 7.5 mm) was mapped using a step size and aperture of 25 um
for a total 33,600 individual IR spectra. The red colour in the image describes areas of cancerous invasion, whereas the blue
colour depicts a region of remnant healthy cortex tissue. Green, grey and cyan colours in the image represent regions of colla-
gen containing tissues such as the capsule, medullary cords and sinuses, respectively. (c) ANN image of positive lymph node
PN1. The red colour in the image describes regions classified as cancerous by the analysis. In contrast, the blue colour depicts
the tissue that was correctly classified as non-cancerous. Black pixels within the image describe spectra that were not able to

be classified by the neural net.

colours were then plotted at the x, y co-ordinates from
which each spectrum was recorded, thus creating a
pseudo-colour ANN image. The entire classification and
image re-construction procedure was completed in
approximately one minute. By direct comparison of this
ANN image, and those acquired from staining (Figure 2a)
and HCA spectroscopic imaging (Figure 2b), a remarkable
agreement is observed. Regions of the tissue section that
were previously identified as being healthy cortex, cap-
sule, medullary cords or medullary sinuses were correctly
classified by the algorithm as being non-cancerous in
nature. In contrast, the invading cancerous breast tissue
that comprises a majority of the tissue area is correctly
classified as being malignant. The number of additional
black pixels is also very small, which indicates only a
small amount of spectra could not be classified by the
algorithm.

This initial test of the trained neural net proved to be very
promising. However, a more demanding and rigorous test
would be to apply the same algorithm to spectral data sets
collected from different lymph nodes that were not used
to train the neural net. Therefore, two additional lymph
node data sets were analyzed by the same neural net. The
results from these experiments are shown in Figure 3. The
H&E stained image displayed in Figure 3a was captured
from a frozen section cut from another positive lymph
node (labelled as PN2). Within this section, large regions
of invading cancerous breast tissue were clearly evident,
and only small pockets of remnant non-cancerous tissue
remained. As previously described, spectral data were
acquired from a directly parallel unstained section, and
the recorded data set analysed by the trained neural net.
The resulting ANN image, displayed in Figure 3b, again
bears a remarkable resemblance to the corresponding
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Figure 3
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H&E Image .

ANN Image

Frozen tissue analysis using supervised pattern recognition. (a) H&E stained image of positive lymph node PN2. The IR
imaged area (11.2 mm x 3.1 mm) was mapped using a step size and aperture of 25 um for a total 55,552 individual IR spectra.
The positive node comprises large regions of cancerous breast tissue (2) and remnants of healthy nodal tissue (I). (b) ANN
image of positive lymph node PN2. The red and blue colours represent the correctly classified cancerous (2) and healthy nodal
tissues (1) respectively. Black pixels within the image describe spectra that were not identifiable by the neural net. (c) H&E
stained image of negative lymph node NNI. The IR imaged area (2.8 mm % 2.5 mm) was mapped using a step size and aperture
of 25 um for a total 11,000 individual IR spectra. The negative node comprises typical anatomical features of a healthy node.
These include the surrounding capsule (1), primary follicles (2) and medullary sinuses (3). (d) ANN image of negative node
NN2. The blue colour is representative of healthy nodal tissue and thus correctly classifies the tissue section. The red colour
describes the very small number of pixels incorrectly classified as cancerous node by the analysis. Black pixels within the image

describe spectra that were not able to be classified by the neural net.

stained image. Despite small structural differences due to
tissue folding and tearing, there is almost a one-to-one
correlation between histology and the spectral diagnosis.
The H&E image displayed in Figure 3c was alternatively
captured from a frozen section cut from a negative or
healthy lymph node (labelled as NN1). This tissue section
comprised typical anatomical features of a healthy lymph
node, including the surrounding capsule, multiple pri-
mary follicles within the cortex, and the medullary cords
and sinuses. The spectral data set collected from the paral-
lel section was again classified by the same neural net and
the resulting ANN image is displayed in Figure 3d. This
image quite clearly indicates the neural net has not iden-

tified any clear regions within the tissue that contain sus-
picious cells, and has diagnosed the section as being
healthy. However, nine red pixels are apparent within the
image that were incorrectly classified as being cancerous
by the algorithm. These pixels were found at the edges of
unrecognised tissue, and may represent regions of very
weak spectral features. Nevertheless, the spectral data set
classified by the neural net contained 11,000 individual
spectra, of which 9 were misclassified.

The second and directly parallel part of this study was the
spectroscopic investigation of deparaffinised lymph
nodes tissues. We used the same approach utilised for the
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frozen sections of tissue and a positive lymph node that
contained both breast metastasis and remnant healthy tis-
sues was used for neural net training. The results pre-
sented in Figure 4 illustrate the initial unsupervised
analysis (HCA) of the recorded spectral data set, and the
subsequent neural net training and validation. Figure 4a
displays the H&E image captured from the positive lymph
node used in this process (labelled as PN3). In contrast to
the analysis of frozen tissues, the reflective substrates used
for deparaffinised tissues more readily allow the conven-
tional H&E staining of samples. Thus, all subsequent H&E
images presented in this paper were collected directly
from the section used for spectral data acquisition. After
conventional screening by a histopathologist, regions of
cancerous invasion, macrophages, capsular tissue, adi-
pose tissue, and cortex tissue containing lymphocytes
were identified. By directly comparing this H&E image to
cluster maps that were constructed after HCA analysis, a 5-
cluster structure provided differentiation of all tissue types
present. As can be seen in Figure 4b, the red colour
describes the invading metastatic breast cancer, the rem-

Figure 4

http://www.biomedcentral.com/1472-6890/8/8

nant lymphocytes are a dark blue, macrophages can be
identified as green, the thin capsule is yellow, and the sur-
rounding adipose tissue has a brown colouration. The
spectra contained in these clusters were then used to train
a diagnostic neural net using the same methodology as
described previously. Figure 4c displays the ANN image
that was constructed after analysing the same spectral data
set via this newly trained neural net. The direct compari-
son of the images acquired from staining (Figure 4a) and
HCA spectroscopic imaging (Figure 4b) again shows
remarkable agreement between histopathological classifi-
cation and the spectroscopic method. Regions of the tis-
sue section that were previously identified as being
macrophages, cortex, capsule, and adipose tissue were cor-
rectly classified by the algorithm as being non-cancerous
(blue colour). In contrast, the invading cancerous breast
tissue has been correctly classified as being malignant or
cancerous in nature (red colour). The amount of addi-
tional black pixels is also very small, which again indicates
only a few spectra could not be classified by the algorithm.

ANN Image

Deparaffinised tissue analysis using HCA spectroscopic imaging & supervised pattern recognition. (a) H&E

stained image of a positive lymph node PN3. The positive node comprises a large region of cancerous breast tissue (), macro-
phages (2), lymphocytes (4), adipose tissue (5), and a thin surrounding capsule (3). (b) HCA spectroscopic image of positive
lymph node PN3. The IR imaged area (3.3 mm % 4.9 mm) was mapped using a step size and aperture of 25 um for a total
25,676 individual IR spectra. The red colour in the image describes areas of cancerous breast tissue. In contrast, the remnant
healthy tissues are depicted by the blue (lymphocytes), green (macrophages), brown (adipose tissue) and yellow (capsule) col-
ours respectively. (c) ANN image of positive lymph node PN3. The red colour in the image describes regions correctly classi-
fied as cancerous by the analysis. In contrast, the blue colour depicts the remnant healthy tissues that were correctly classified.
Black pixels within the image describe spectra that were not able to be classified by the neural net.

Page 10 of 14

(page number not for citation purposes)



BMC Clinical Pathology 2008, 8:8

This neural net was subsequently applied to two addi-
tional spectral data sets that were recorded from depar-
affinised lymph nodes. These spectral diagnoses are
presented in Figure 5. Both spectral data sets used to test
the algorithm were recorded from positive lymph nodes
(labelled PN4 & PN5) that contained clear regions of
breast metastatic cancer and remnant healthy cortex tis-
sue. Their corresponding H&E stained photomicrographs
are displayed in Figures 5a and 5c respectively. Figures 5b
and 5d alternatively display the ANN images that were
constructed from spectral classification by use of the neu-
ral net. It is clear from direct comparison of these images

ANN Image
@

Figure 5

http://www.biomedcentral.com/1472-6890/8/8

that regions of cancerous invasion and healthy tissue have
been correctly identified by the algorithm and these are
described by the red and blue colours respectively. There
are only a small number of disparities between histology
and spectral diagnosis, which also lie along borders of
metastatic invasion where cancerous spectral features are
often expressed and identified.

Conclusion

This paper provides strong evidence that automated diag-
nosis by means of infrared micro-spectral imaging is pos-
sible. By correlating spectral data acquired from unstained

% = H&E Image

-

ANN Image
(2
@

Deparaffinised tissue analysis using supervised pattern recognition. (a) H&E stained image of positive lymph node
PN4. The IR imaged area (5.2 mm X 4.6 mm) was mapped using a step size and aperture of 25 um for a total 37,856 individual
IR spectra. The positive node comprises large regions of cancerous breast tissue (2) and remnants of healthy nodal tissue ().
(b) ANN image of positive lymph node PN4. The red and blue colours represent the correctly classified cancerous (2) and
healthy nodal tissues (1) respectively. Black pixels within the image describe spectra that were not able to be classified by the
neural net. (c) H&E stained image of negative lymph node PN5. The IR imaged area (6.5 mm X 6.5 mm) was mapped using a
step size and aperture of 25 um for a total 67,600 individual IR spectra. The positive node comprises both remnant healthy
nodal tissue (I) and invading cancerous breast tissue (2). (d) ANN image of negative node PN5. The blue colour is representa-
tive of the correctly classified healthy nodal tissue. In contrast, the red colour depicts the regions of cancerous invasion that
were correctly classified. Black pixels within the image describe spectra that were not able to be classified by the neural net.

Page 11 of 14

(page number not for citation purposes)



BMC Clinical Pathology 2008, 8:8

tissue, to morphological interpretations made by pathol-
ogists of stained tissue, automated algorithms were suc-
cessfully constructed that can rapidly classify spectral data
recorded from frozen and deparaffinised tissue into
benign and malignant categories. This would indicate that
both intra-operative and more conventional surgical spec-
imens can be diagnosed by this technique, although fro-
zen samples would be preferable since we are assured
biochemical integrity is maintained. Present studies are
focused toward extending this classification scheme to
identify all subtypes of tissue composed with an excised
lymph node, which has been successfully accomplished in
several different organ models using different methods of
supervised analysis [30,37]. However, the application of
this technology to solely identify morphological features
that are discernable by a pathologist using H&E staining
protocols falls short of what is achievable using this tech-
nique. Since a change to the molecular composition of a
cell most likely occurs before a morphological change,
there is a potential to identify abnormalities within tissue
at an earlier stage disease. For example, activated lym-
phocytes that are reacting to an infection, or conversely a
breast or metastatic cancer, could display different bio-
chemical characteristics that are identifiable using this
technology. Early or "pre-cancerous" stages of abnormal-
ity may also be discernable and provide prognostic rather
than diagnostic information to a physician. Although the
occurrence of such pre-cancerous stages of disease is not
directly investigated in this study, the application of HCA
spectroscopic imaging may help reveal such tissues. When
employing a greater number of clusters to describe the tis-
sue biochemistry than those identified by pathologists as
being ideal, distinct bordering regions are often identified
between healthy and abnormal tissues that may provide
additional sensitivity to identify potentially suspicious
cells. Our present focus lies toward the direct investigation
and interpretation of such tissues, and the correlation of
such intermediate states of disease with other non-mor-
phological interpretations of tissue, such as immunohis-
tochemical stains. The identification of micro features
within tissues such as micro-metastases or isolated
tumour cells is also vitally important. Recent experiments
that have investigated breast micro-metastases within
lymph nodes, using a superior pixel resolution of 6.25
pm?, have displayed a sensitivity to identify very small
regions of abnormal tissue that encompass only a few can-
cerous cells. Such results are extremely promising, and
shall be reported at a later date, but suggest infrared
micro-spectral imaging can provide a sensitivity and spe-
cificity that rivals current screening protocols. Parallel
studies on lymph nodes that display colon metastases
have also revealed that cancers from different primary
tumours provide distinctly different spectral signatures
[44]. These observations have also been reported for sim-
ilar studies on brain metastatic cancers [45]. Thus poorly

http://www.biomedcentral.com/1472-6890/8/8

differentiated and hard to determine cases of metastatic
invasion may additionally be identified by this technique.

The spectroscopic data recorded in this investigation were
acquired using instrumentation that employed a small
linear array detector system, composed of only 16 detector
elements. Thus, acquisition times of spectral data sets
from very large lymph nodes was time consuming and in
the hour timescale. However, more recently, instrumenta-
tion that employ 2nd generation Focal Plane Array (FPA)
camera detector systems have become commercially avail-
able. These systems can simultaneously record 16,384
infrared spectra over a 700 pm?2 area (128 x 128 pixels)
with a pixel resolution of 5.5 pm2. Consequently, tissue
sections that measure 5 mm x 5 mm in size can be spec-
troscopically imaged in ca. 10 minutes with superior pixel
resolution. The rapid and continued development of IR
detector array technology and IR instrumentation could
feasibly lower this timescale to a few minutes or less.
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