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Abstract
Background: Biomarker-based assessments of biological samples are widespread in clinical, pre-
clinical, and epidemiological investigations. We previously developed serum metabolomic profiles
assessed by HPLC-separations coupled with coulometric array detection that can accurately
identify ad libitum fed and caloric-restricted rats. These profiles are being adapted for human
epidemiology studies, given the importance of energy balance in human disease.

Methods: Human plasma samples were biochemically analyzed using HPLC separations coupled
with coulometric electrode array detection.

Results: We identified these markers/metabolites in human plasma, and then used them to
determine which human samples represent blinded duplicates with 100% accuracy (N = 30 of 30).
At least 47 of 61 metabolites tested were sufficiently stable for use even after 48 hours of exposure
to shipping conditions. Stability of some metabolites differed between individuals (N = 10 at 0, 24,
and 48 hours), suggesting the influence of some biological factors on parameters normally
considered as analytical.

Conclusion: Overall analytical precision (mean median CV, ~9%) and total between-person
variation (median CV, ~50–70%) appear well suited to enable use of metabolomics markers in
human clinical trials and epidemiological studies, including studies of the effect of caloric intake and
balance on long-term cancer risk.

Background
After tobacco, over-nutrition is, arguably, the major cause
of excess morbidity in developed countries, affecting a
broad spectrum of diseases including cancer, cardio-/cere-

brovascular disease, and type II diabetes. This association
may be seen in both broad demographic groups, such as
the American Cancer Society study group (900,000 U.S.
adults)[1] and in more narrowly defined demographic
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groups, such as the Nurses' Health Study (NHS) group
(122,000 U.S. female registered nurses) [2]. The difficulty
of accurately assessing caloric intake and energy expendi-
ture [3] has hampered studies relating to energy restric-
tion, caloric balance, and caloric intake in both
epidemiology and clinical nutrition. Several of the major
hurdles in identifying biomarkers to address this and sim-
ilar epidemiological problems are related to analytical
(the lack of useful measurement standards) and method-
ological (the inability to distinguish individual physiol-
ogy) issues [4-13]. Recent results have suggested the
advantage of metabolomics approaches in clarifying these
situations, at least for issues related to nutritional epide-
miology[14,15].

Metabolomics technology [16,17] offers a promising new
approach to identify biomarkers that characterize health
and disease, including, as we have shown [18-21], caloric
intake. The major advantage of metabolomic research in
epidemiology and nutrition is that, at least in theory,
metabolomics provides a snapshot view of a biological
system and enables capture of information about both
long- and short-term interactions of an organism and its
environment, including nutrition. Thus, this approach
provides us more complete information about the bio-
chemical status or biochemical phenotype of organisms
than many other possible approaches [22-25]. Position
papers have remarked on the application of metabo-
lomics to problems ranging from meat contamination to
drug development and understanding mechanistic
aspects of disease[26]. Within the realm of nutrition,
metabolomics has been used to probe specific dietary
constituents [27,28] and has been proposed as a key ele-
ment in developing personalized medicine approaches
[29-33] and in gaining insight into clinical and epidemio-
logical questions [34,35].

Our metabolomics approach to clinical and epidemiolog-
ical questions is distinct from, and complementary to,
both direct targeted analysis (e.g., studying a few metabo-
lites in a single pathway) and global profiling. Specifi-
cally, we focused initially on an animal model that
displays the physiological benefits associated with nutri-
tionally replete, lower-energy diets[18-21,36,37]. We pro-
pose that this analysis will enable us to address statistical
concerns about the complexity of uninformed analysis of
human datasets, harness the power of well-characterized
animal models, and conserve finite biological samples
from prospective epidemiologic cohorts. This work was
conducted with a long-range focus on the use of epidemi-
ological resources, tools, and approaches to develop indi-
vidual risk predictors for humans and improved
biomarkers for use in pre-clinical, clinical, and epidemio-
logical studies.

We have previously completed proof of principle studies
showing that we can identify serum metabolites that differ
between AL-fed rats and rats undergoing CR[37], con-
firmed these findings in an independent cohort[18], and
generated expert systems/trained algorithms that can
objectively identify these groups [19,21]. We have further
published a series of analytical reports related to the
detailed methods of these studies, assessing the analytical
variability and stability of the individual components in
the plasma/sera metabolome[14,15,36,38,39]. Further
characterization of these metabolomic serotypes in rats
undergoing CR, including studies related to the duration
and extent of restriction, is in progress (YS et al, in prepa-
ration). The next goal is to analyze the markers identified
in these studies in humans. Before beginning these stud-
ies, however, we first need to confirm that our technolog-
ical platform works with human plasma samples. We also
must show that our overall platform, including collection
and procurement methods, is robust within the con-
straints of prospective epidemiologic cohorts. In theory
and in practice, the analytical variability of our measure-
ments and the stability of the individual components of
the plasma/sera metabolome could be assessed by simply
determining the repeatability of the measurements of
each marker, as we have described in detail in our previ-
ous papers [14,15].

As we move from studies of rat sera to studies of human
plasma, however, many of the potential sources of error
become both qualitatively different and quantitatively
more complex. Here we address two of these issues: (i)
our ability to measure these analytes reproducibly in
banked human plasma and (ii) the need to assess the sta-
bility of these markers under different, realistic, and
"worst case" shipping conditions. We note that, for the
purposes of this report, we define this "worst case" in the
context of the specific samples we expect to test in the
future, which are drawn from the NHS. These samples are
handled exactly as are the samples in the current report,
and no sample is used that has been held >48 hours in
shipping conditions.

Methods
Human plasma samples
Two sets of plasma samples that were collected into
sodium heparin-containing tubes for use as analytical
controls were examined in this study. Approximately 75%
of the blood samples were drawn at least 8 hours after the
last meal. In our study, all analysis of samples was con-
ducted in a blinded fashion. Set 1 was comprised of dupli-
cate (split) samples from 12 women who were
participants in the NHS and triplicates (splits) of two
pooled plasma samples. The latter samples were pools
made up of multiple units of fresh frozen plasma
obtained from a local hospital and used routinely to eval-
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uate laboratory reproducibility. Set 2 consisted of three
(split) samples from each of 10 individuals as well as
duplicates of two pooled plasma samples as described
above. These 10 adults were healthy men and women
recruited locally who responded to a flyer requesting vol-
unteers to provide blood samples for pilot studies. Of the
three blood samples from each individual in Set 2, the
first was processed (see below) immediately after acquisi-
tion, the second was stored as whole blood in a refrigera-
tor for 24 hours, and the third was stored for 48 hours;
these latter conditions mimicked typical overnight ship-
ping conditions in many cohort studies. Processing con-
sisted of centrifugation of whole blood samples at 1530 g
for 20 min at 4°C, after which the plasma was removed
and aliquots placed into cryotubes. These cryotubes con-
taining plasma samples were frozen and maintained in
the vapor phase of a liquid nitrogen freezer at <130°C. All
nitrogen freezers were alarmed and monitored continu-
ously. Samples were shipped from The Channing Labora-
tory to Burke Medical Research Institute by overnight
courier on dry ice. Further details on this approach have
been previously published[8].

IRB approval was obtained from Partners Human
Research Committee and the IRB at Burke Medical
Research Institute.

HPLC-ECD analysis
Metabolite extraction, separation, detection, and identifi-
cation were conducted as previously described.
[14,15,36,38,40-45] (and see Additional File 1) Briefly,
plasma samples were thawed to 0°C and distributed into
new 1.5 mL microcentrifuge tubes (125 μl/tube). 500 μL
of acetonitrile (An)/0.4% glacial acetic acid (HAc) at -
20°C was added to each tube, after which the tubes were
vortexed 20 sec and centrifuged for 15 min at 12000 g at -
2°C. Supernatant in volumes of 500 μl was evaporated to
dryness under vacuum in a CentriVap™ Concentrator
(Labconco). The dry remains were dissolved in 100 μl of
mobile phase A [see above refs, e.g. [38]] and placed in
autosampler vials. Each set of samples was analyzed by
HPLC within 2–3 days. The HPLC injection volume was
50 μl.

Chromatographic separation and electrochemical detec-
tion were performed using HPLC coupled with an electro-
chemical array detector (HPLC-ECD), as previously
described[43,45]. The gradient and mobile phase reagents
have also been previously described[43,45]. The reasons
for the use of this protocol include integration of sample
preparation and the mobile phases used. Notably the use
of pentane sulfonic acid in mobile phase A solubilizes any
protein fragments that may be extracted into the ace-
tonitrile. The subsequent use of the B mobile phase con-
taining virtually all organic solvents washes the column of

any lipid materials which are extracted into the ace-
tonitrile. This was discussed by in reports by Milbury
[45]and Yao [46].

The gradient essentially displays an increase in hydropho-
bicity from that of ascorbate to that of tocopherol. Detec-
tion of metabolites was accomplished with a 16-channel
coulometric array detector with potentials incremented in
60 mV steps (0–900 mV). All HPLC-ECD system func-
tions were controlled by CoulArray software; biomarkers
were identified and quantitated using CEAS-5.12 soft-
ware. The metabolite concentration in individual human
plasma samples was assessed and reported relative to that
of metabolites in the "model" pool, in which the concen-
tration of all markers was set at 100. The metabolic profile
of the human pool studied in this report includes up to 66
markers, metabolites that represent a subset of the ~90
metabolites that we previously identified in sera of rats fed
either AL or calorie restricted diets [14,18,19,21].

Most of the metabolites studied here are identified by vir-
tue of their position in the array (retention time) and their
relative reactivity across the array (dominant and sub-
dominant channel). Examples of metabolites that can be
assessed via Coularray-based technology include some
amino acids (eg, tyrosine, tryptophan, cysteine, methio-
nine), the majority of the tryptophan and tyrosine cata-
bolic pathways, indoles, purines, antioxidants (eg
ascorbate, tocopherol, glutathione, lipoate, dihydrol-
ipoate) and redox damage products (eg, 8-OH-deoxygua-
nosine, glutathione disulfide).

Mathematical/Statistical Analysis
Pearson correlation matrices were calculated in NCSS 97
with pairwise deletion for missing data. Means and errors,
data simulations, and chi-squared analysis were con-
ducted/determined in Microsoft Excel 2002. Paired t-tests
were conducted in Statview. Principal components analy-
sis was conducted using SIMCA P10.5 (Umetrics, Kinne-
lon, NJ). A single metabolite value, present at apparently
100-fold higher levels than any cognate metabolite in dif-
ferent samples, was excluded as an outlier.

Results
Our previous analytical validation studies focused on
identifying the sources of potential analytical error in our
analyses, including methods of sample acquisition and
preparation, handling, transportation, and storage, as well
as the influence(s) of total series size, complexity of the
organic matrix, and aspects of experimental
design[8,15,47,48]. As noted above, we now continue
these initial validation studies by examining both the
reproducibility of the analytical platform when it is used
to study human plasma and the stability of sample metab-
olites under simulated shipping conditions. Variability in
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sample acquisition (including variable stability under
acquisition conditions) is fundamentally indistinguisha-
ble in our study from biological variability and therefore
will be considered in a subsequent study.

Analytical Reproducibility in Human Plasma
The reproducibility (precision) of metabolite measure-
ments was addressed by blinded analysis of split samples.
In the framework of a reproducibility study, aspects of the
analytical platform such as the delivery of a sample to the
analytical laboratory and the completion of sample anal-
ysis (e.g., sample processing), chromatographic separa-
tion and electrochemical detection, and peak
identification and quantitation were considered.

To test our ability to analyze human plasma, we received
30 blinded samples, each of which was present in dupli-
cate or triplicate (as a further blind, the laboratory was
told that only duplicates were present). At the initial step,
we looked for previously identified CR markers in the
samples and identified 66 metabolites that clearly were
present in serum/plasma from both species and were ana-
lytically suitable without further optimization.

Of the 23 remaining markers in our standard rat profile,
12 were not present in the plasma sample (expected, as
some metabolites are only found in male rats), and 11
represented unclear assignments and were not studied fur-
ther in this report.

Using these 66 metabolites, we readily identified all 30 of
the blinded duplicates and triplicates. This demonstration
of analytical self-similarity represents the first stage in val-
idating the analytical platform for future use in human
studies. In all 30 cases, cognate duplicates/triplicates were
immediately apparent (Figure 1). Quantitative data show
that, for all comparisons, the highest correlations were
with the cognate split. Although the dataset is small, these
findings also begin to address biological variability. Spe-
cifically, the mean correlation between two non-matched
samples was 0.004 ± 0.20 (mean ± S.D.) and the median
correlation was -0.007. These numbers suggest a relatively
low correlation between samples derived from different
individuals. This analysis does not address, however, the
relative variability between multiple samples from a given
individual as compared with samples derived from differ-
ent individuals (see below and work in progress).

Having demonstrated high precision on a per sample
basis, we then evaluated precision at the individual
metabolite level. Fourteen duplicate samples (12 of which
were derived from individuals and 2 of which were
pooled plasma samples) were scored for the 66 markers
(924 total metabolites). The resulting data were then used
to estimate the analytical accuracy that could be obtained

from the analysis of banked human plasma (Table 1). The
data were analyzed before and after manually reconfirm-
ing any peak with a coefficient of variation (CV) of >40%
(48 pairs, 96 total metabolites); this procedure is referred
to as "polishing" in Table 1, and was done specifically to
determine if the analytical error originated before or dur-
ing the HPLC analysis or during peak matching and quan-
titation.

Fewer than 4% of the data points were found to have peak
matching and quantitation errors of >10%, see legend to
Table 1). The comparisons were made across the dataset
and between the pairs. Both mean and median values of
the measurements are reported to stress that analysis of
the majority of analytes had very good quantitative repro-
ducibility. This finding supports the contention that most
of the cross-species markers can be measured with suffi-
cient analytical accuracy for use in additional studies.
Within subject quantitative reproducibility of the meas-
urement of metabolite concentrations in human plasma
was comparable with data obtained for rat sera (rat sera:
mean CV of ~12%, median CV of ~7%; human plasma:
mean CV of 17–19%, median CV of ~12%, see Table 1)
[14,15].

Sample Stability under "Worst Case" Shipping Conditions
In contrast to analysis of samples in laboratory-based
research, analysis of samples in population-based studies
is complicated by the need to transfer specimens from the
field to a central location, where they are then processed
and stored. In epidemiology studies, this requirement
often means that whole blood samples cannot be frozen
prior to arrival at the central location and subsequent
processing. In practice, this constraint imparts a delay,
generally approximately 24 hours but potentially as great
as 48 hours, between the time of collection and the time
of analysis or freezing for long-term storage. It is therefore
essential to confirm that these delays do not destroy or
severely degrade the analytes of interest. We used a testing
procedure developed within the NHS to address this issue.

In the NHS, the samples are collected from locations all
over the country, thus variation in time of collection, time
exposed to light prior to packaging, and time devoted to
shipping are impossible to control. We therefore exam-
ined samples that had been allowed to sit for 0, 24, or 48
hours under simulated shipping conditions prior to
processing. Of the 61 metabolites that we tested (three
were eliminated after displaying relatively poor reproduc-
ibility in the above study; two were not clearly identified
in this follow-up study), 46 (~75%) showed variation
consistent with normal analytical variation over this time
frame (Figure 2).
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Correlation analysis of human plasma based on 66 metabolitesFigure 1
Correlation analysis of human plasma based on 66 metabolites. Pearson correlations of each of 30 samples with each 
of the other 29 samples are presented graphically. Each datapoint represents the mean correlation for the 66 metabolites 
between the specific sample and each of the other 29 samples. Filled circles show the correlation of a sample with its correct 
duplicate or triplicate. Small pluses show the correlation of a sample with unmatched samples. A heavy bar has been placed at 
zero for visual reference.
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Table 1: Analytical Parameters

Before polishing data After polishing data

Range, median CVs for 66 variables 2–54% 2–36%
Range, mean CVs for 66 variables 2–58% 3–39%
Median CV for all 66 variables 12% 12%
Mean CV for all 66 variables 19% 17%
By 13 Pairs, overall median CV 9% 9%

"Before polishing data", primary (raw) analysis; "After polishing data", final analysis after manual re-inspection (see text). The most critical data are the 
median coefficients of variation (CV); our median CV was ~10%, well within the levels necessary to conduct the proposed study. We also note that 
upon re-examination of the dataset for quality control purposes, 1% (11 peaks) was left unscored due to analytical concerns, and 3% (25 peaks) had 
scores that differed by >10% from the original call. These data suggest that, even in the absence of any optimization, we can consistently measure >96% 
of all metabolites with a median ± 10% precision. For the last line "By 13 pairs", we first determined the median CV for all 66 variables in each of the 
pairs, and then determined the mean/median of these values. By definition, overall mean CVs are unchanged by this difference in calculation procedure, 
and are not shown.
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The use of correlation-based approaches (as above) ena-
bled us to assign 29 of 34 samples to the individual from
whom the sample was derived (10 triplets [0, 24, 48
hours] – Figure 3, Panel A, 2 duplicates as internal con-
trols – data not shown). Specifically, only four samples
could not be definitively assigned to the correct individ-
ual, and only one was assigned incorrectly (2 pairs of
duplicate pools were assigned correctly; 7 triplets from
individuals were assigned correctly; for 2 triplets, 2 of 3
samples were matched correctly, whereas 1 was not
assigned; for 1 triplet, 2 samples were not assigned
[marked as possible match] and 1 was assigned incor-
rectly). Thus, even under the worst possible test condi-

tions (i.e., all unstable metabolites included, samples
outside normal temporal bounds, no algorithm optimiza-
tion), we can still identify the origin of 85% of all samples
with only 3% absolute error. When only the 46 analyti-
cally strong peaks are used, the individual origin of each
sample is apparent with 100% accuracy (Figure 3, Panel
B).

Biological variability of markers
We next addressed the inherent biological variability of
the human metabolome. Initial studies on biological var-
iability were conducted in two ways: by comparison of the
markers as a population, and by comparisons of individ-

Stability study of 61 metabolitesFigure 2
Stability study of 61 metabolites. 34 plasma samples held under shipping conditions for 0, 24, or 48 hours were run and 
analyzed using standard protocols. Data are presented as mean +/- SD from the 0 time point. Each analysis is based on data 
from 10 samples analyzed at 3 time points each. Left panel shows a "zoomed-out" view to give an overview of the structure of 
the data; right panel shows a "zoomed-in" view to give a better sense of the fine structure of the data. The pink lines in the 
right figure mark +/- 25%.
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ual markers. In both cases, the concentration of each
marker was normalized to its corresponding concentra-
tion in a control pool; i.e., we are discussing relative rather
than absolute concentrations of the metabolites in the
profile. When the metabolites are considered as a popula-
tion and scored as percents of a standardized pool, test set
1 and set 2 (control group) had essentially equivalent lev-
els of metabolites (Table 2, top line, means). Overall,
however, metabolite levels varied more widely in the sec-
ond population than in the first. Specifically, the levels of
the metabolites measured showed both greater quantita-
tive variability (Table 2, top line, S.D.s) and larger ranges

[mean level of metabolites varied between individuals
from ~80–140% and ~65–130% (~1.8–2-fold) in set 1
and from 45–150% (~3.3-fold) in set 2]. This increased
variability may relate, at least in part, to the inclusion of
plasma from both sexes in cohort 2. Comparison of
means and medians suggest that this difference was
caused by the presence of more extreme values in the sec-
ond group rather than a shift in the central tendency.

Individual biomarkers also showed wide ranges in their
biological variability. As shown in Figure 4, less than 8%
of our markers had inter-person CVs of <20%, approxi-

Table 2: Descriptive statistic of total biomarker levels in human plasma

Metabolite measurements

Statistics 1st set of data (n = 14)* 2nd set of data (n = 10)**

Duplicates &Triplicates Control 24-hours 48-hours

Mean ± SD 94.8± 52.5 85.1 ± 75.1 96.2 ± 83.4 97.6 ± 77.6
Mean median 82.3 60.1 67.7 71.8

Mean CV 57.1 82.7 83.8 76.4
Median CV 50.2 70.6 70.7 66.9

* 66 metabolites
** 61 metabolites
Mean ± SD: Each metabolite is scored relative to the standard pool, then each individual sample is assigned one value (the mean of its metabolites 
averaged across the duplicates and triplicates) and these means are then expressed as mean ± SD
Mean Median: Average of the medians of the 66/61 variables across the population
Mean CV: Average of the CVs of the 66/61 variables across the population
Median CV: Median of the CVs of the 66/61 variables across the population

Correlation analysis of human plasma based on 66 or 46 metabolitesFigure 3
Correlation analysis of human plasma based on 66 or 46 metabolites. Pearson correlations of each of 3 sets of 10 
samples with each of the other 29 samples are presented graphically. Triplicates include one sample that was not incubated 
prior to freezing, one incubated for 24 hours, and one incubated for 48 hours. Each datapoint represents the mean correlation 
for the 61 (Panel A) or 46 metabolites between the specific sample and each of the other 29 samples. Filled circles show the 
correlation of a sample with its correct triplicate. Small pluses show the correlation of a sample with unmatched samples. A 
heavy bar has been placed at zero for visual reference. Thin vertical lines are used to visually highlight the groups.
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mately equivalent to the percentage that had CVs exceed-
ing 100%. Variability, here defined at the level of
individual metabolites, was again slightly greater in the
second population, similar to that seen at the level of the
markers as a population. Expansion of our studies to
broader populations may further refine these estimated
distributions.

It is reasonable to expect that metabolites from different
individuals/samples will show essentially equivalent
changes during storage and processing (ie, analytical
parameters for a given variable are assumed to be inde-
pendent of the source). This result was observed for most

markers when they were compared between most individ-
uals in our data set (Figure 5). Samples from one individ-
ual, however, showed elevated degradation of multiple
markers (Figure 5, right insert, Figure 6, Panel A); further-
more, increased concentrations of several metabolites
were observed relative to the control in some samples
from this individual, whereas decreased concentrations of
these metabolites were observed in others (Figure 5). In
some cases, changes in metabolites were biphasic between
0, 24, and 48 hours, suggesting the presence of either
competing or sequential reactions. Consistent with this
possibility, considerable inter-individual (Figure 6) and
inter-metabolite (Figure 5) differences were observed at

Biological variability of markersFigure 4
Biological variability of markers. Biological variability of metabolite concentrations assessed in set 1 (A, 14 samples, 66 
metabolites) and set 2 (B, 10 samples, 61 metabolites, 0 time point) of human plasma samples. All data are presented as CV (%), 
and sorted from largest to smallest CVs to simplify comparisons.
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both 24 and 48 hours time points. Nonetheless, principal
components analysis of the metabolic profiles readily dis-
tinguished 24 and 48 hour samples with 90% accuracy
(Figure 6, panel B [note: 0 and 24 hour samples could not
be so separated]). These differences in component 2 were
statistically significant (p = 0.0001 by paired t-test). Fur-
thermore, note the essentially orthogonal distinction
between the effects of transport conditions on samples A
and I (Figure 6, Panel C, see legend for note on individual
F), and the clear biphasic response of individual J (Figure
6, panel C, arrows).

To assess the statistical validity of this observation of
apparent inter-personal differences in compound stabil-
ity, we compared all metabolite changes by paired t-test
(10 triplets means 45 paired t-test comparisons [10*9/2]
at each time point, 24 and 48 hours). Twenty of 45 com-
parisons had p < 0.05 at 24 hours, and 22 of 45 had p <
0.05 at 24 hours. To assess the likelihood of this result
occurring by chance, we modeled changes in metabolite
levels assuming that all changes were random. Of 100
comparisons, 6 had p values < 0.05 (consistent with
expected results from probability alone). Chi-squared
analysis of the comparison resulted in p values of < 10-10.

Biomarkers display metabolite- and individual-specific degradationFigure 5
Biomarkers display metabolite- and individual-specific degradation. Panels A and B show the concentrations of the 
metabolites studied, at 24 (Panel A) and 48 hours (Panel B) under shipping conditions. Data are expressed as percentage of the 
original (Time 0) concentration. Arrows highlight some of the particularly variable metabolites. Note the log scale to empha-
size fold-change. The left insert shows an example of two 48 hour samples in which individual changes are metabolite specific; 
the right insert shows a comparison in which almost all metabolites are more sensitive to time-associated changes in one indi-
vidual than another. The diagonal lines have been added to emphasize the point at which metabolites undergoing equivalent 
degradation in both individuals would be located. Data from the study of plasma samples from 10 individuals are shown.
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Discussion
The central finding of this paper is that the metabolites
that we have previously used to distinguish caloric intake
in rats can be analyzed in human plasma with good ana-
lytical precision (median CV of 9–12%) and have high
inter-sample variability (median CV of 50–70%). This
combination, similar to results obtained from rat studies,
[14] suggests that these markers are analytically suited for
use in studies of the serum metabolome in human epide-
miologic cohorts and multi-center clinical trials. [Note:
Analytical CVs are slightly higher in the human samples.
This slightly increased variability in human plasma versus
rat sera might relate to the procedure of human plasma
preparation, which includes the addition of anticoagu-
lants to the blood. Analysis of human plasma as com-

pared with rat sera was associated with a more rapid
contamination of guard and analytical columns and
greater wearing of the electrodes, suggesting that even the
acetonitrile purified sample retained some contaminants,
which might also degrade performance.]

Two important caveats follow from our experimental
design: (i) the estimate of total inter-sample variability
includes both the analytical variability and the biological
variability, although the study's overall analytical preci-
sion suggests that the variability is primarily biological in
origin; and (ii) we cannot distinguish the components of
biological variability that derive from sample-to-sample
within-person variability versus long-term between-per-
son variability – the latter of which is critical for our

Principal Components analysis suggests that multiple individualized degradation patterns existFigure 6
Principal Components analysis suggests that multiple individualized degradation patterns exist. Panels A and B 
show a principal components analysis (components 1 and 2) of the entire dataset (61 variables, 10 individuals, 24 and 48 hour 
time points, expressed relative to t = 0 control sample – ie the data shown in Figure 5). A shaded oval has been added to panel 
A to show that metabolites from one individual are much more generally sensitive to degradation than those of the others. The 
shaded ovals in panel B show that this informatics approach readily recognizes the 24 and 48 hour time groups, with the two 
"exceptions" denoted with arrows. Panel C shows a different principal components analysis (after removal of 24 and 48G from 
panel A), with the 24 and 48 hour time points from two individuals identified with colored ovals; note that the long axis of the 
ovals are orthogonal. A similar but visually more difficult relationship to interpret is seen with sample A and F (sample 48F sits 
just left of the origin at [~-2,0]) Arrows denote two samples in which an individual's samples did not group.
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planned investigations. Work on this latter question, the
relative biological variability between different people as
compared to the variability within a temporal series of
samples from a given person, is the next logical step.

In general, biomarker validation studies require demon-
strating validity in three broadly defined stages, in which
the following concerns are addressed: (i) analytical issues
[8,47,48]; (ii) inter- vs intra-personal biological variation;
and (iii) utility (ie, the correspondence of a certain
biomarker profile with a phenotype of interest) [4,7,49-
57].

A critical inherent assumption in most or all biomarker
studies is that, from an analytical/mathematical stand-
point, stage (i) must precede stage (ii) and that stage (i) is
essentially independent of stage (ii). In part, this logical
construction simply states that we must be able to meas-
ure the concentration of an analyte, and understand the
limits of that measurement, before we can usefully exam-
ine differences in that analyte between two or more con-
ditions of interest. The above logical construction further
implies that our ability to measure a given analyte and the
basic analytical properties of that analyte are expected to
be unaffected by its source – that is, the person from
whom the sample is derived (e.g., the accuracy of measur-
ing the sodium concentration in a blood sample is
expected to be equivalent in identically-treated samples
from different people).

Our results appear to provide empirical evidence support-
ing a noteworthy exception to this logical, but ultimately
theoretical argument. These data, and the interpretation
of these data, are dependent on the extent to which sam-
ple handling in our experiment was sufficiently controlled
to enable other influences to be excluded. In support of
the idea that we met these conditions, the differences
observed are primarily in the 48 hour samples, whereas
we would expect random distribution for most possible
analytical problems (e.g., sample handling). Further sup-
port for our ability to generally fulfill the goal of appropri-
ate sample handling is provided by evidence of high
correlations between the levels of corresponding metabo-
lites in paired samples (See Figures 1 and 3). Nonetheless,
although we tried to treat all samples equally, it is impos-
sible to exclude the possibility that there was some unrec-
ognized difference in handling that contributed to the
observed individual degradation patterns. Given this
caveat, however, our results provide evidence that, espe-
cially at 48 hours, but even, to a lesser extent, at 24 hours,
individual differences in bio-or chemo-transformation of
metabolites (i.e., differences in metabolite stability) exist
at a measurable level. At 48 hours, these differences are
sufficient to enable ready classification by time in simu-
lated shipping conditions, suggesting that avoiding 48

hour delays in initial sample processing is strongly
desired. Because relatively fast processing is not always
possible, the development of new methods for recogniz-
ing excessive transformation/degradation of metabolites
would be helpful, allowing "for cause" exclusion of outly-
ing samples if necessary.

Attempts to distinguish the existence of different groups
or classes of individuals with respect to their metabolomic
transformation appeared suggestive, but were statistically
borderline with respect to overfit diagnostics and are not
shown. We have no direct evidence as to the mechanism
of metabolite transformation, and can only suggest that
the interplay between genetics and environment and
between enzymatic and non-enzymatic mechanisms
might be involved in the variability of biomarker degrada-
tion. These data suggest that, for the case of plasma metab-
olomics analysis relevant for epidemiological studies, the
general assumption that biological and analytical varia-
tion are independent must be viewed with caution, as
there appear to be some individual-specific, metabolite-
specific interactions. For studies such as ours, these con-
cerns, if they occur in significant numbers, would show up
as loss of signal and increase in noise, with a consequent
reduction in the signal:noise ratio. From what we have
seen, this issue is not a major concern in our study. The
recognition and/or understanding of such changes might,
however, be particularly important if one attempts to
bring a quasi-mechanistic systems biology approach to
deriving models for study in epidemiological cohorts.
Consider, for example, a disease hypothesized to result
from a failure of homeostatic feedback among the com-
partments of the genome, transcriptome, proteome, and
metabolome. A metabolomic model of this disease could
be built based on animal studies in which sample han-
dling is (or, at least, can be) rigorously defined, but would
be difficult to address in humans due to both biological
and analytical noise. Understanding analytical noise is
thus one step toward enabling study of mechanistic
hypotheses in humans.

Conclusion
In conclusion, it is worth recalling that the development
and validation of biomarkers of nutritional status for use
in human studies has a long history. Despite this history,
relatively few useful markers – other than direct intake
markers such as carotenoids in blood, double-labeled
water, and urinary nitrogen – have been identified and are
in widespread use for dietary status assessment [34,58-
60]. Attempts to identify biomarkers of direct dietary
intake have been limited by many factors, including both
analytical and biological issues[34,61-68]. In this report,
we present evidence that biomarker profiles reflecting two
extremes of caloric intake in rodents can be adapted for
use in humans. This profile is analytically stable at the
Page 11 of 14
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level of both population and individual markers, with
median analytical CVs < 20% of median biological CVs,
even under the worst case shipping conditions and the
inclusion of markers with lower analytical quality
(defined here as stability). The surprising finding was that
the stability of some markers clearly varied between indi-
viduals. This finding suggests that sources of variation
normally considered as analytical can be influenced by
biological parameters.
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